(8)^2=x(x+x)

Simple and best practice solution for (8)^2=x(x+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8)^2=x(x+x) equation:



(8)^2=x(x+x)
We move all terms to the left:
(8)^2-(x(x+x))=0
We add all the numbers together, and all the variables
-(x(+2x))+8^2=0
We add all the numbers together, and all the variables
-(x(+2x))+64=0
We calculate terms in parentheses: -(x(+2x)), so:
x(+2x)
We multiply parentheses
2x^2
Back to the equation:
-(2x^2)
a = -2; b = 0; c = +64;
Δ = b2-4ac
Δ = 02-4·(-2)·64
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*-2}=\frac{0-16\sqrt{2}}{-4} =-\frac{16\sqrt{2}}{-4} =-\frac{4\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*-2}=\frac{0+16\sqrt{2}}{-4} =\frac{16\sqrt{2}}{-4} =\frac{4\sqrt{2}}{-1} $

See similar equations:

| -9(n+15)=-63 | | 2^4x+3=14 | | 0.75x-8.25=4.50x | | 7(8-6x)=-182 | | 2a-6=2(a+1)+11a+5 | | (4x-12)+29=180 | | 15n+19=14n | | 3m+2(5+m)+5=0 | | 960=(x+20)12 | | 13×2x=28 | | 7(8-6x)=-84 | | 5x+12x+7x+4+104=360 | | (4x-12)•+29=180 | | 6(w+4)=-4(2w-4)+2w | | X+(x*0.0825)=75.56 | | 1275=(x+30)15 | | 5x+12x+7x+4+104=180 | | 7y+3y-4=100+94+4 | | 14q=(-21) | | X^2+x=40.5 | | 2x^2+40=90 | | 2(w-5)-6=-4(-3w+1)-2w | | (X^2)+(x-7)^2=9^2 | | 4y-70=4y-70 | | 3x+11-x-1=26 | | -4/3x-1=8/5x-1 | | 12+12=-4(5x-6) | | 4/9x8/9=x | | 10x+18x-6+2=-5x+2-6 | | k=-38/3 | | 2x+6x+10=28+(-2) | | -2x(6)=12 |

Equations solver categories